Source code for openpathsampling.analysis.tis.flux

import collections
import openpathsampling as paths
from openpathsampling.netcdfplus import StorableNamedObject
import pandas as pd
import numpy as np

from .core import MultiEnsembleSamplingAnalyzer

def flux_matrix_pd(flux_matrix, sort_method="default"):
    """Convert dict form of flux to a pandas.Series

    Parameters
    ----------
    flux_matrix : dict of {(state, interface): flux}
        the output of a flux calculation; flux out of state and through
        interface
    sort_method : callable or str
        method that takes a list of 2-tuple key from flux_matrix and returns
        a sorted list. Strings can be used to select internally-defined
        methods. Currently implemented: "default"
        (:meth:`.default_flux_sort`).

    Returns
    -------
    :class:`pandas.Series` :
        The flux represented in a pandas series
    """
    keys = list(flux_matrix.keys())
    known_method_names = {
        'default': default_flux_sort
    }
    if isinstance(sort_method, str):
        try:
            sort_method = known_method_names[sort_method.lower()]
        except KeyError:
            raise KeyError("Unknown sort_method name: " + str(sort_method))

    if sort_method is not None:
        ordered = sort_method(keys)
    else:
        ordered = keys
    values = [flux_matrix[k] for k in ordered]
    index_vals = [(k[0].name, k[1].name) for k in ordered]
    index = pd.MultiIndex.from_tuples(list(index_vals),
                                      names=["State", "Interface"])
    return pd.Series(values, index=index, name="Flux")


def default_flux_sort(tuple_list):
    """Default sort for flux pairs.

    Flux results are reported in terms of flux pairs like ``(state,
    interface)``. This sorts them using the ``.name`` strings for the
    volumes.
    """
    name_to_volumes = {(t[0].name, t[1].name): t for t in tuple_list}
    sorted_results = sorted(name_to_volumes.keys())
    return [name_to_volumes[key] for key in sorted_results]


[docs] class MinusMoveFlux(MultiEnsembleSamplingAnalyzer): """ Calculating the flux from the minus move. Raises ------ ValueError if the number of interface sets per minus move is greater than one. Cannot use Minus Move flux calculation with multiple interface set TIS. Parameters ---------- scheme: :class:`.MoveScheme` move scheme that was used (includes information on the minus movers and on the network) flux_pairs: list of 2-tuple of :class:`.Volume` pairs of (state, interface) for calculating the flux out of the volume and through the state. Default is `None`, in which case the state and innermost interface are used. """
[docs] def __init__(self, scheme, flux_pairs=None): super(MinusMoveFlux, self).__init__() # error string we'll re-use in a few places mistis_err_str = ("Cannot use minus move flux with multiple " + "interface sets. ") self.scheme = scheme self.network = scheme.network self.minus_movers = scheme.movers['minus'] for mover in self.minus_movers: n_innermost = len(mover.innermost_ensembles) if n_innermost != 1: raise ValueError( mistis_err_str + "Mover " + str(mover) + " does not " + "have exactly one innermost ensemble. Found " + str(len(mover.innermost_ensembles)) + ")." ) if flux_pairs is None: # get flux_pairs from network flux_pairs = [] minus_ens_to_trans = self.network.special_ensembles['minus'] for minus_ens in self.network.minus_ensembles: n_trans = len(minus_ens_to_trans[minus_ens]) if n_trans > 1: # pragma: no cover # Should have been caught be the previous ValueError. If # you hit this, something unexpected happened. raise ValueError(mistis_err_str + "Ensemble " + repr(minus_ens) + " connects " + str(n_trans) + " transitions.") trans = minus_ens_to_trans[minus_ens][0] innermost = trans.interfaces[0] state = trans.stateA # a couple assertions as a sanity check assert minus_ens.state_vol == state assert minus_ens.innermost_vol == innermost flux_pairs.append((state, innermost)) self.flux_pairs = flux_pairs
def _get_minus_steps(self, steps): """ Selects steps that used this object's minus movers """ return [s for s in steps if s.change.canonical.mover in self.minus_movers and s.change.accepted] def trajectory_transition_flux_dict(self, minus_steps): """ Main minus move-based flux analysis routine. Parameters ---------- minus_steps: list of :class:`.MCStep` steps that used the minus movers Returns ------- dict of {(:class:`.Volume, :class:`.Volume`): dict} keys are (state, interface); values are the result dict from :meth:`.TrajectoryTransitionAnalysis.analyze_flux` (keys are strings 'in' and 'out', mapping to :class:`.TrajectorySegmentContainer` with appropriate frames. """ # set up a few mappings that make it easier set up other things flux_pair_to_transition = { (trans.stateA, trans.interfaces[0]): trans for trans in self.network.sampling_transitions } flux_pair_to_minus_mover = { (m.minus_ensemble.state_vol, m.minus_ensemble.innermost_vol): m for m in self.minus_movers } minus_mover_to_flux_pair = {flux_pair_to_minus_mover[k]: k for k in flux_pair_to_minus_mover} flux_pair_to_minus_ensemble = { (minus_ens.state_vol, minus_ens.innermost_vol): minus_ens for minus_ens in self.network.minus_ensembles } # sanity checks -- only run once per analysis, so keep them in for pair in self.flux_pairs: assert pair in flux_pair_to_transition.keys() assert pair in flux_pair_to_minus_mover.keys() assert len(self.flux_pairs) == len(minus_mover_to_flux_pair) # organize the steps by mover used mover_to_steps = collections.defaultdict(list) for step in minus_steps: mover_to_steps[step.change.canonical.mover].append(step) # create the actual TrajectoryTransitionAnalysis objects to use transition_flux_calculators = { k: paths.TrajectoryTransitionAnalysis( transition=flux_pair_to_transition[k], dt=flux_pair_to_minus_mover[k].engine.snapshot_timestep ) for k in self.flux_pairs } # do the analysis results = {} flux_pairs = self.progress(self.flux_pairs, desc="Flux") for flux_pair in flux_pairs: (state, innermost) = flux_pair mover = flux_pair_to_minus_mover[flux_pair] calculator = transition_flux_calculators[flux_pair] minus_ens = flux_pair_to_minus_ensemble[flux_pair] # TODO: this won't work for SR minus, I don't think # (but neither would our old version) trajectories = [s.active[minus_ens].trajectory for s in mover_to_steps[mover]] mover_trajs = self.progress(trajectories, leave=False) results[flux_pair] = calculator.analyze_flux( trajectories=mover_trajs, state=state, interface=innermost ) return results @staticmethod def from_trajectory_transition_flux_dict(flux_dicts): """Load from existing TrajectoryTransitionAnalysis calculations. Parameters ---------- flux_dicts: dict of {(:class:`.Volume`, :class:`.Volume`): dict} keys are (state, interface); values are the result dict from :meth:`.TrajectoryTransitionAnalysis.analyze_flux` (keys are strings 'in' and 'out', mapping to :class:`.TrajectorySegmentContainer` with appropriate frames. Returns ------- dict of {(:class:`.Volume, :class:`.Volume`): float} keys are (state, interface); values are the associated flux """ TTA = paths.TrajectoryTransitionAnalysis # readability on 80 col return {k: TTA.flux_from_flux_dict(flux_dicts[k]) for k in flux_dicts} def from_weighted_trajectories(self, input_dict): """Not implemented for flux calculation.""" # this can't be done, e.g., in the case of the single replica minus # mover, where the minus trajectory isn't in the active samples raise NotImplementedError( "Can not calculate minus move from weighted trajectories." ) def calculate(self, steps): """Perform the analysis, using `steps` as input. Parameters ---------- steps : iterable of :class:`.MCStep` the steps to use as input for this analysis Returns ------- dict of {(:class:`.Volume`, :class:`.Volume`): float} keys are (state, interface); values are the associated flux """ intermediates = self.intermediates(steps) return self.calculate_from_intermediates(*intermediates) def intermediates(self, steps): """Calculate intermediates, using `steps` as input. Parameters ---------- steps : iterable of :class:`.MCStep` the steps to use as input for this analysis Returns ------- list (len 1) of dict of {(:class:`.Volume`, :class:`.Volume`): dict} keys are (state, interface); values are the result dict from :meth:`.TrajectoryTransitionAnalysis.analyze_flux` (keys are strings 'in' and 'out', mapping to :class:`.TrajectorySegmentContainer` with appropriate frames. """ minus_steps = self._get_minus_steps(steps) return [self.trajectory_transition_flux_dict(minus_steps)] def calculate_from_intermediates(self, *intermediates): """Perform the analysis, using intermediates as input. Parameters ---------- intermediates : output of :meth:`.intermediates` Returns ------- dict of {(:class:`.Volume, :class:`.Volume`): float} keys are (state, interface); values are the associated flux """ flux_dicts = intermediates[0] return self.from_trajectory_transition_flux_dict(flux_dicts)
[docs] class DictFlux(MultiEnsembleSamplingAnalyzer): """Pre-calculated flux, provided as a dict. Parameters ---------- flux_dict: dict of {(:class:`.Volume`, :class:`.Volume`): float} keys are (state, interface) pairs; values are associated flux """
[docs] def __init__(self, flux_dict): super(DictFlux, self).__init__() self.flux_dict = flux_dict
def calculate(self, steps): """Perform the analysis, using `steps` as input. Parameters ---------- steps : iterable of :class:`.MCStep` the steps to use as input for this analysis Returns ------- dict of {(:class:`.Volume`, :class:`.Volume`): float} keys are (state, interface); values are the associated flux """ return self.flux_dict def from_weighted_trajectories(self, input_dict): """Calculate results from weighted trajectories dictionary. For :class:`.DictFlux`, this ignores the input. Parameters ---------- input_dict : dict of {:class:`.Ensemble`: collections.Counter} ensemble as key, and a counter mapping each trajectory associated with that ensemble to its counter of time spent in the ensemble. Returns ------- dict of {(:class:`.Volume`, :class:`.Volume`): float} keys are (state, interface); values are the associated flux """ return self.flux_dict def intermediates(self, steps): """Calculate intermediates, using `steps` as input. Parameters ---------- steps : iterable of :class:`.MCStep` the steps to use as input for this analysis Returns ------- list empty list; the method is a placeholder for this class """ return [] def calculate_from_intermediates(self, *intermediates): """Perform the analysis, using intermediates as input. Parameters ---------- intermediates : output of :meth:`.intermediates` Returns ------- dict of {(:class:`.Volume, :class:`.Volume`): float} keys are (state, interface); values are the associated flux """ return self.flux_dict @staticmethod def combine_results(result_1, result_2): """Combine two sets of results from this analysis. For :class:`.DictFlux`, the results must be identical. Parameters ---------- result_1 : dict of {(:class:`.Volume, :class:`.Volume`): float} first set of results from a flux calculation result_2 : dict of {(:class:`.Volume, :class:`.Volume`): float} second set of results from a flux calculation Returns ------- dict of {(:class:`.Volume, :class:`.Volume`): float} keys are (state, interface); values are the associated flux """ if result_1 != result_2: raise RuntimeError("Combining results from different DictFlux") return result_1