openpathsampling.analysis.PathHistogram
- class openpathsampling.analysis.PathHistogram(left_bin_edges, bin_widths, interpolate=True, per_traj=True)[source]
N-dim sparse histogram for trajectories.
This allows features like interpolating between bins and normalizing the histogram to the number of trajectories.
- Parameters:
left_bin_edges (array-like) – lesser side of the bin (for each direction)
bin_widths (array-like) – bin (voxel) size
interpolate (bool or callable) – how to interpolate missing bin visits. Default True gives “subdivide” method, False gives no interpolation. Arbitrary callable should take
old_ptandnew_pt, and return the list of bins that were visited, excluding the bin forold_pt.per_traj (bool) – whether to normalize per trajectory (instead of per-snapshot)
Methods
__init__(left_bin_edges, bin_widths[, ...])add_data_to_histogram(trajectories[, weights])Adds data to the internal histogram counter.
add_trajectory(trajectory[, weight])Add a single trajectory to internal counter, with given weight
compare_parameters(other)Test whether the other histogram has the same parameters.
empty_copy()Returns a new histogram with the same bin shape, but empty
histogram([data, weights])Build the histogram.
map_to_bins(data)map_to_float_bins(trajectory)normalized([raw_probability, bin_edge])Callable normalized version of the sparse histogram.
single_trajectory_counter(trajectory)Calculate the counter (local histogram) for an unweighted trajectory
sum_histograms(hists)xvals(bin_edge_type)Position values for the bin
Attributes
progress